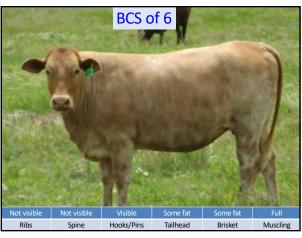
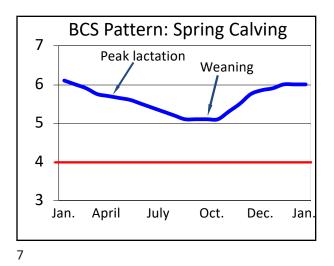

TEXAS A&M GRILIFE EXTENSION

Energy and Protein Supplementation for Cow-Calf Operations

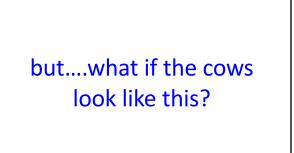

Jason Banta, Ph.D., PAS Associate Professor and Extension Beef Cattle Specialist Texas A&M AgriLife Extension Service Texas A&M University Overton, TX What 3 primary things affect supplementation of energy & protein? BCS nutrient requirements forage & hay quality

2

3


1

4

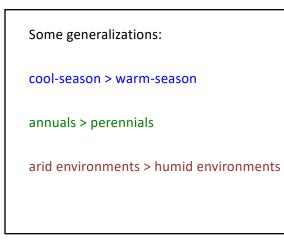


Description	% CP	% TDN	% Ca	% P
2-yr-old lactating cow, peak lactation	11.5	60	0.28	0.18
3-yr-old lactating cow, peak lactation	12.5	61	0.30	0.19
mature lactating cow, peak lactation	12.5	61	0.30	0.19
coming 3-yr-old dry cow, 270 d pregnant	9.0	58	0.26	0.17
mature dry cow, 270 d pregnant	8.5	55	0.26	0.17

*Estimated dietary requirements for high marbling cows with no weather stress. Assumes 1,300 lb mature weight and 25 lb milk potential at maturity (NRC, 2016)

as forage quality declines forage intake decreases

- low quality forage = low intake
- high quality forage = higher intake



13

Factors Affecting Forage or Hay Quality

- species and cultivar
- maturity
- temperature
- nitrogen fertilizer
- rained on hay
- hay put up wet

14

15

warm-season perennials

ADG: 1.0 to 1.6 lb

- Tifton 85
- OWB

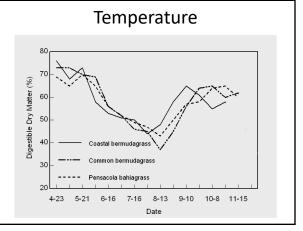
ADG: 0.75 to 1.25 lb

- hybrid bermudagrass
- bahiagrass

16

warm-season annuals

ADG: 2.0 to 2.75 lb


- sorghum x sudangrass
- sudangrass

ADG: 1.25 to 2.0 lb

- crabgrass
- pearl millet

cool-season annuals ADG: 1.5 to 2.85 lb - ryegrass - small grains - rye, wheat, oats, barely, triticale

Maturity					
Interval between cuttings	% TDN	% CP	tons/acre		
3 weeks	65.2	18.5	7.9		
4 weeks	61.9	16.4	8.4		
5 weeks	59.3	15.4	9.2		
6 weeks	58.0	13.3	10.3		
8 weeks	54.1	10.7	10.2		
12 weeks	51.0	9.0	10.4		
Coastal bermudagrass study in Georgia Glen Burton					

19

nitrogen fertilizer

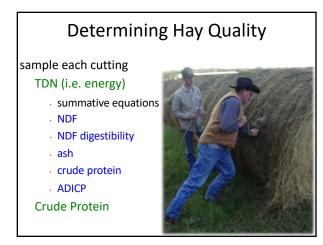
- increase protein and yield
- no or minimal effect on TDN

Well-fertilized?

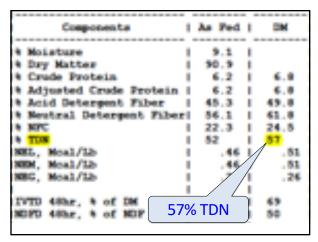
21

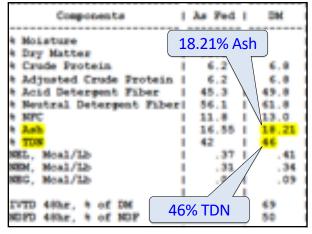
22

The Maillard Reaction

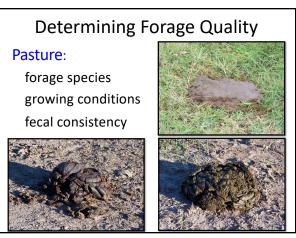

- aka non-enzymatic browning reaction
- heat
 - heat is produced from fermentation of wet hay
 - condensation of sugar residues with amino acids
 - proteins are rendered indigestible
 - ADICP
 - adjusted CP

(P. J. VanSoest, Nutritional Ecology of The Ruminant)

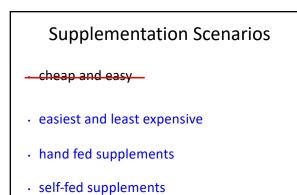




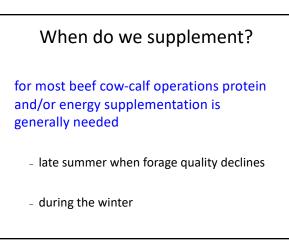
Forage Testing Laboratories

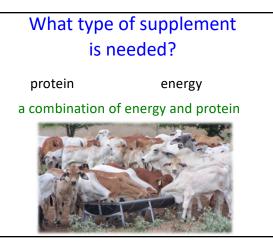

Dairy One Forage Lab Ithaca, NY; 800-344-2697 http://www.dairyone.com

talk to nutritionist who you may seek recommendations from

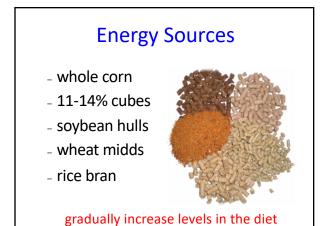

Components	As Fed	1	DM
<pre>% Moisture </pre>	8.0	1	
% Dry Matter	92.0	1	
% Crude Protein	11.3	1	12.2
% Adjusted Crude Protein	11.3	1	12.2
% Acid Detergent Fiber	37.3	1	40.6
% Neutral Detergent Fiber	64.8	I.	70.5
& NFC	11.6	Ĩ.	12.6
% TDN	50	1	54
NEL, Mcal/Lb	. 38	Т	. 41
NEM, Mcal/Lb	. 42	1	.46
NEG, Mcal/Lb	.19	1	.21

32





Options if Cattle Need Supplementation


38

39

40

Energy and Protein Sources

- 20% cubes
- corn gluten feed
- distillers grains
- winter pasture
- whole cottonseed (max. 25% of diet)

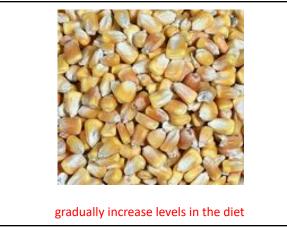
gradually increase levels in the diet

Protein Sources

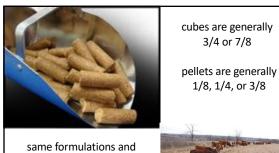
- cottonseed meal
- 38 or 40% cubes
- soybean meal
- $_{\scriptscriptstyle -}$ sunflower meal
- alfalfa hay
- winter pasture
- urea (limited amount in right situation)

43

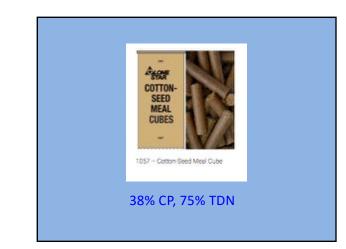
Hand Feed Supplements


44

Considerations

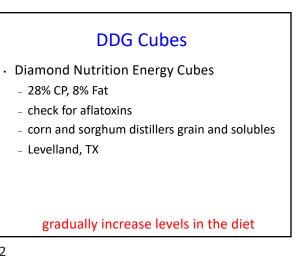

- easy to increase or decrease amount
- many options to choose from
- often cheaper per unit of nutrient especially TDN
- may require more labor

45



ingredients can be used for both

sizes change based on feeding situation and animal size



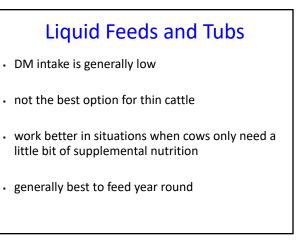
50

51

52

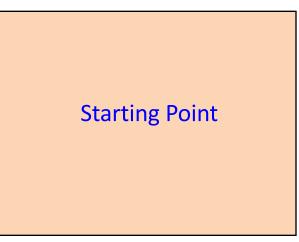
More Cube Considerations

- forage extenders cubes are rarely a good option, to low in TDN
- rare for cubes to contain a good effective roughage source
- how is the Ca:P ratio
- is there any K added for dormant native forages


- may be hard to change amount consumed
- may not be able to supply enough TDN to thin animals or animals consuming low quality forage
- less options to choose from
- may require less labor
- often best to feed all year long

57

55



- Our 4' model holds approximately 1300 to 1700 lbs of feed depending on the type of feed being dispensed.
- Our 8' model holds approximately 2600 to 3400 lbs of feed depending on the type of feed being dispensed.
- Our 16' model holds approximately 5200 to 6800 lbs of feed depending on the type of feed being dispensed.

62

Hay: 45% TDN, 5.0% CP

Dry cow

goal: maintain BCS 8 lbs of 20% cubes

Wet Cow

goal: control weight loss 11 lbs of 20 % cubes

63

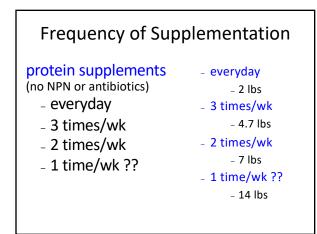
Hay: 55% TDN, 9.0% CP

Dry cow

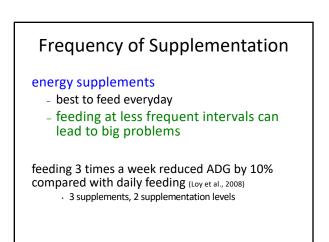
goal: maintain BCS

hay only

Wet Cow


goal: control weight loss 2 lbs of 40 % cubes Hay: 50% TDN, 6.5% CP

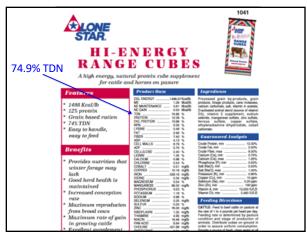
Dry cow goal: maintain BCS 4 lbs of 20% cubes

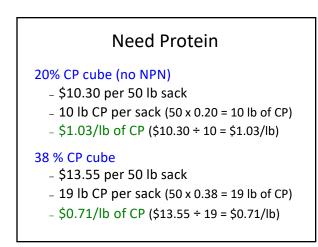

Wet Cow goal: control weight loss 6 lbs of 40 % cubes

64

69

71


70


- $\cdot\,$ do we need protein
- $\cdot\,$ do we need energy
- can the feed provide enough
- feeding conditions and resources
- labor considerations
- price per unit of protein or energy
- \cdot type of protein

Some feeds are designed to help meet the protein or energy needs of the animal.

Some feeds are designed to have something to sell or something that is cheap. They may have little value as protein or energy supplements.

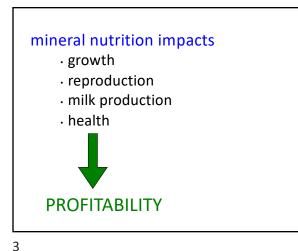
TEXAS A&M GRILIFE EXTENSION

Mineral Supplementation for Beef Cow-Calf Operations

Jason Banta, Ph.D., PAS Associate Professor and Extension Beef Cattle Specialist Overton, TX

1

Disclaimers

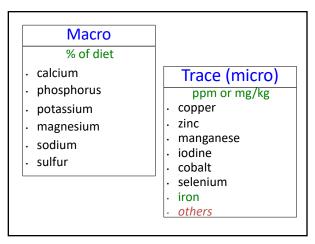

The information given herein is for educational purposes only.

Reference to trade name is made with the understanding that no discrimination is intended and no endorsement is implied by the Texas A&M AgriLife Extension Service.

Only a partial listing of available products and companies is included and no discrimination is intended by the omission of a product.

Listed values do not guarantee current company specifications.

2



Components of a Complete Mineral Supplement

• salt

- macro minerals
- trace minerals (aka micro minerals)
- · vitamins A, D, and E

Differences Between Companies

- · formulation
- mineral source
- reputation
- · palatability enhancers
- research programs
- targeted intake
- · weatherization

Targeted Intake

2 or 4 oz.

- most are 4 oz.

target of 4 oz.

- average intake of 3 – 4 oz. would be acceptable

Se level

8

- 4 oz: commonly 25 - 27 mg

7

Common Formulations

- higher-calcium, lower phosphorus
 - 15% Ca, 4% P
 - 16% Ca, 5% P
 - 15% Ca, 7.5% P
- similar Ca & P levels or higher P
 - 14% Ca, 12% P
 - 12% Ca, 9% P
 - 12.5% Ca, 8% P
- winter pasture (moderate to higher Mg)
 - _ \geq 5% Mg
 - higher Ca

9

Additives

researched

- IGR
- CTC (requires VFD)
- bovatec (not labeled for cows)
- rumensin
- product A
- $_{\scriptscriptstyle -}~$ product A with IGR
- $_{\scriptscriptstyle -}~$ product A with CTC
- product A with IGR and CTC

	Example A	Example B	Example C
Calcium	15	16	15
Phosphorus	4	5	7.5
Salt	21	15.5	20
Magnesium	3	5	1
Potassium	-	0.1	1
Copper	1,200	2,500	1,200
Zinc	4,200	4,500	3,600
Manganese	3,600	4,000	3,600
Selenium	25	26	27
Iodine	100	200	60
Cobalt	150	20	12
Vitamin A	100,000	100,000	300,000
Vitamin D	2,500	-	30,000
Vitamin E	100	100	300

10

Additives

not well researched or limited/no benefits

- there is a long list of these
- be cautious of claims
- be aware of selectively reporting research
- many would not justify the added cost

Macro Minerals: Geographic & Forage System Considerations

Phosphorus Levels

once nutrient requirements are meet, providing extra P will not improve reproduction

NRC requirements are too high for P

14

13

Native Range

dormant forages

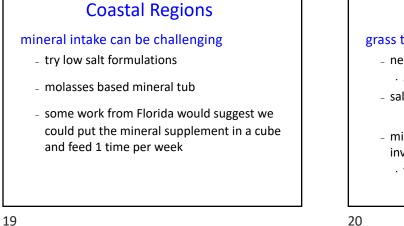
 most mineral concentrations decrease with time especially P & K

protein and energy supplement can greatly impact the Ca:P ratio of the mineral needed

consider K level in protein and energy supplements

15

intake, Ibs	% P	gm P supplied
0.25	4	4.5
0.25	9	10.2
0.125	9	5.1
2	1.1	10.0
2	0.7	6.4
	Ibs 0.25 0.25 0.125 2	Ibs % P 0.25 4 0.25 9 0.125 9 2 1.1

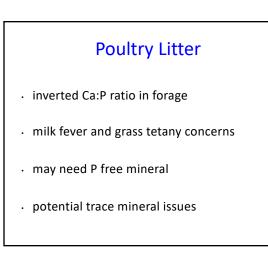

	амрт-А	амрт-Р
Calcium	15	12
Phosphorus	4	9
Salt	21	17
Magnesium	3	2.5
Potassium	-	-
Copper	1,200	1,200
Zinc	4,200	4,200
Manganese	3,600	3,600
Selenium	25	25
Iodine	100	100
Cobalt	150	190
Vitamin A	100,000	400,000
Vitamin D	2,500	8,000
Vitamin E	100	400

16

Native Range

Calcium content of the soil

- just because the soil is high in Ca or is sitting on a limestone base doesn't mean the plant will take up more Ca
- bermudagrass average Ca: 0.43%
- native forages average Ca: 0.48%



Winter Pasture

grass tetany concern for cows

- need consistent intake of Mg · 5% or greater Mg level
- salt is important for absorption of Mg
- milk fever and grass tetany may both be involved in some cows
 - · want higher Ca, lower P level

20

21

trace mineral supplementation will not overcome inadequate energy and protein intake

energy and protein intake are responsible for the big improvements or changes

trace minerals provide insurance and if deficiencies exist can help with improvements

· copper

· zinc

- selenium
- manganese
- iodine · cobalt

23

too much trace mineral can cause

- decreased ADG
- decreased pregnancy rates
- death

be cautious of using multiple products with added trace minerals

	Requirement, mg/kg of DMI	Maximum Tolerable, mg/kg of DMI	Ratio of Maximum Tolerable: Requirement (mg/kg of DMI)
Copper	10	40	4
Zinc	30	500	17
Manganese	40	1000	25
Iodine	0.50	50	100
Cobalt	0.15	25	167
Selenium	0.10	5	50

26

25

	Average Requirement, mg/hd/day (1,350 lb cow)	Maximum Tolerable, mg/hd/day (1,350 lb cow)
Copper	138	490
Zinc	413	6,122
Manganese	551	12,245
lodine	6.9	612
Cobalt	2.1	306
Selenium	1.4	61

27

lodine

preferred forms

- EDDI (organic form)
- calcium iodate
- $_{-}~$ good target \geq 100 ppm in 4 oz mineral

don't want

- potassium or sodium iodide
- less stable

to much calcium iodate has been reported to reduce weight gain and feed intake

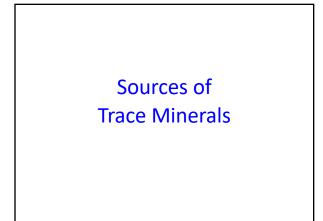
formulate mineral: 1-3-2 or 1-4-2
good targets for copper in most situations
1,200 to 1,500 ppm in 4 oz mineral

desirable ratios for Cu – Zn – Mn - requirement: 10-30-40

- many products have way more copper than needed
- higher levels of copper have been reported to:
 reduce ADG
 - reduce feed intake
 - $\cdot \,$ accumulate to toxic levels and cause death

28

Selenium


requirement

- about 1.40 mg/d for 1,350 lb cow

legal limit

- 3 mg/d
- that is about 2.1 times requirement

toxicity could be a concern if getting added Se from multiple sources

inorganic

- ionic bond
- copper sulfate, zinc oxide, sodium selenite, etc.
 organic
 - covalent bond to carbon-containing ligand
 - mineral bonded to: amino acid, protein, or CHO
 - zinc methionine, copper amino acid complex, cobalt glucoheptonate, etc.

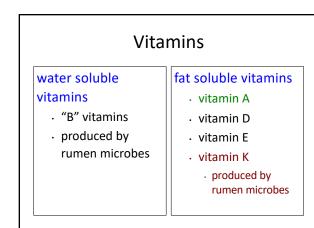
hydroxy

- covalent bond to a hydroxy (OH) group
- zinc hydroxychloride, basic copper chloride, manganese hydroxychloride

31

32

inorganic vs. organic vs. hydroxy


all cattle consume some organic trace minerals from forage and other feedstuffs

inorganic vs. organic vs. hydroxy

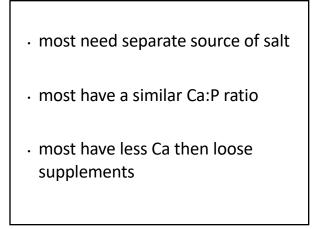
research is inconsistent on animal growth, reproduction, and health

organic and hydroxy sources may be safer for vitamins added to mineral supplements

34

Vitamins

35

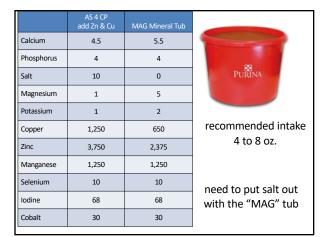

vitamin A deficiency

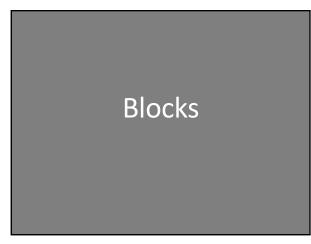
- birth of dead or weak calves
- frequent occurrence of retained placentas
- reduced conception
- impaired spermatogenesis
- precursors to vitamin A are found in green growing forages
- drought concerns

37

39

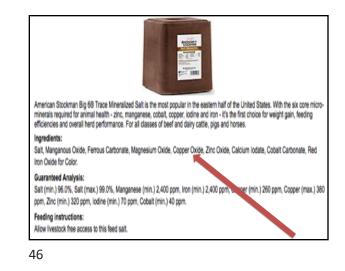
38




	Mineral-lyx	IGR Max
Calcium	3.5 - 4.5	5 - 6
Phosphorus	4	5
Salt	none	none
Magnesium	3.0	5.0
Potassium	1.7	1.5
Copper	500	1,000
Zinc	1,500	3,000
Manganese	2,000	4,000
Selenium	8.8	13.2
lodine	25	50
Cobalt	5	10

recommended intake mineral-lyx: 4.8 to 12 oz. IGR max: 4 oz.

40


Tubs

Loose Mineral Products for Comparison	Company A	Company B	Company C
Calcium	16	15	15
Phosphorus	5	7.5	4
Salt	15 - 16	20	21
Magnesium	5	1	3
Potassium	0.1	1	-
Copper	2,500	1200	1,200
Zinc	4,500	3600	4,200
Manganese	4,000	3600	3,600
Selenium	26	27	25
Iodine	200	60	100
Cobalt	20	12	150
Vitamin A	100,000	300,000	100,000
Vitamin D	-	30,000	2,500
Vitamin E	100	300	100

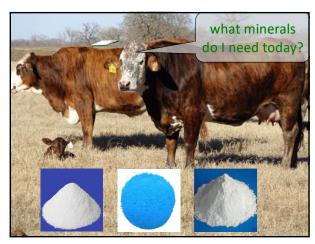
	Big 6	Se-90	Iodized	Sulfur
Calcium				
Phosphorus				
Salt	96 - 99	95 - 98.5	97 – 99.7	95 - 97
Magnesium				
Potassium				
Sulfur				3
Copper	260 - 380	280 - 420		
Zinc	320	3,500		
Manganese	2,400	1,800		
Selenium		90		
Iodine	70	100	100	
Cobalt	40	60		
Vitamin A				
Vitamin D				
Vitamin E				

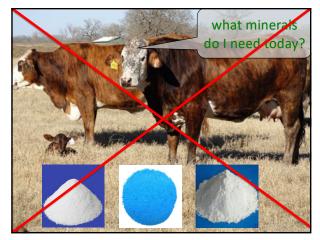
Things That Don't Make Sense To Me

- having more P than Ca in the mineral
- not having any Ca in the mineral
- · putting sodium bicarbonate in a mineral
- · adding sulfur to the mineral

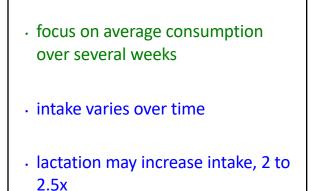
50

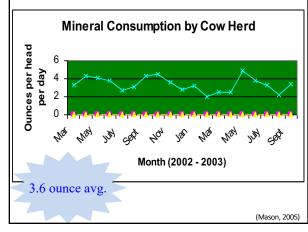
51











62

· if intake is to high

- provide free choice salt
- check location of mineral feeder
- reduce amount of mineral fed

· if intake is low

- determine if cattle are receiving salt from another source
- check location of mineral feeder

63

- initially encourages intake
- as salt consumption increases mineral intake is reduce
- phosphorus
 - generally decreases intake
- magnesium
 - generally decreases intake

64

Calculating Mineral Intake

- · 35 cows
- · put 50 lbs of mineral in an empty feeder
- mineral lasts for 6 days
- \cdot 50 lbs ÷ 6 days = 8.33 lbs per day for the herd
- 8.33 lbs per day ÷ 35 hd = 0.24 lbs/hd/d
- 16 oz. x 0.24 lbs = 3.8 oz./hd/d

How Many Bags Do I Need Per Month

· 40 cows

- 40 cows x 4 oz/cow/day = 160 oz per day (10 lbs)
- 10 lbs per day x 30 days = 300 lbs per month
- 300 lbs ÷ 50 lbs per bag = 6 bags per month

 if same 40 cows only ate 3 oz per day then, they would consume 4.5 bags per month (this would be alright in most situations)

67

68

Reputable Company with a Nutritionist on Staff

Cow-Calf

69

Consider Flexibility

When and What

Do I Feed

70

_ year round is best

- last 3, first 3
- provide salt when not feeding a mineral

When should I feed a cow-calf

mineral supplementation is basically the same as the cow herd with a few exceptions Ca needs increase as ADG increases

when grazing cool-season annuals:

- want at least 10 gm/d of added Ca intake
- Mg level is not really a concern, don't want it to high

80

Nutrient Requirements 500 lb steer calf DMI, % CP ADG % TDN % Ca Ca, gm 1 56 10.0 0.36 20.0 12.5 1.5 60 11.5 0.44 25.6 12.8 65 12.7 0.55 32.2 13.0 2 2.5 70 14.0 0.65 38.1 13.0 75 43.8 3.0 15.3 0.75 13.0

*Estimated dietary requirements for Brangus type steer under typical production conditions (Beef Cattle NRC, 1996). These requirements will vary depending on numerous factors including body condition, health, breed, environmental factors, use of growth promotants, and others.

81

Oklahoma Winter Wheat

4 year average:

no mineral: 1.57 lb/d with mineral: 1.81 lb/d

0.24 lb/d increase due to mineral

Nutrient Requirements

ADG	% TDN	% CP	% Ca	Ca, gm	DMI, Ib
1.0	53	7.8	0.25	22.0	20.0
1.5	57	8.6	0.30	26.9	20.5
2.0	61	9.5	0.34	31.4	20.6
2.5	65	10.3	0.39	35.6	20.6
3.0	70	11.1	0.44	40.6	20.6

*stmated dietary requirements for Brangus type steer under typical production conditions (Beef Cattle NRC, 1996). These requirements will vary depending on numerous factors including body condition, health breed, environmental factors, use of growth promotants, and others.

82

Ca Intake

mineral with 12% Ca if intake is 0.15 lbs = 8.1 gm of Ca

mineral with 16% Ca if intake is 0.15 lbs = 10.9 gm of Ca

mineral with 20% Ca if intake is 0.15 lbs = 13.6 gm of Ca

eser et al., 2007; Effects of en neat pasture)

For Reference Only

	Emerald	Bronze	Gold
Calcium	16	12.5	12.5
Phosphorus	5	8	2
Salt	15 - 16	15 - 17	13 - 15
Magnesium	5	3	13
Potassium	0.1	2	0.2
Copper	2,500	2,500	1,500
Zinc	4,500	6,000	4,500
Manganese	4,000	4,000	4,000
Selenium	26	26	26
Iodine	200	200	200
Cobalt	20	20	20
Vitamin A	100,000	100,000	100,000
Vitamin D	-	10,000	-
Vitamin E	100	110	100

	Texas All Season 12 Complete	Texas All Season 7.5 Complete	Texas All Season 5 Complete	All Season 7.5 Complete	Hi- Magnesium Complete
Calcium	14	15	12	15	14
Phosphorus	12	7.5	5	7.5	4
Salt	24	20	20	20	18
Magnesium	1	1	5	1	10
Potassium	1	1	0.1	1	0.1
Copper	2500	2500	2500	1200	1200
Zinc	7500	7500	7500	3600	3600
Manganese	4000	4000	4000	3600	3600
Selenium	27	27	27	27	27
Iodine	60	60	60	60	60
Cobalt	12	12	12	12	12
Vitamin A	150,000	150,000	75,000	300,000	75,000
Vitamin D	15,000	15,000	7,500	30,000	7,500
Vitamin E	150	150	75	300	75

	амрт-А	амрт-М	амрт-Р	амрт-Т	(Low Sait) AMPT- T
Calcium	15	9	12	12	12
Phosphorus	4	4	9	7	7
Salt	21	20	17	20	4
Magnesium	3	10	2.5	3	3
Potassium	-	-	-	-	-
Copper	1,200	1,200	1,200	1,200	1,200
Zinc	4,200	4,200	4,200	4,200	4,200
Manganese	3,600	3,600	3,600	3,600	3,600
Selenium	25	25	25	25	25
Iodine	100	100	100	100	100
Cobalt	150	150	190	200	200
Vitamin A	100,000	100,000	400,000	250,00	250,00
Vitamin D	2,500	2,500	8,000	5,000	5,000
Vitamin E	100	100	400	250	250

http://beef.tamu.edu jpbanta@ag.tamu.edu