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Abstract

Big data is increasingly attracting the attention of economists. New machine

learning techniques can help to analyze unconventional data structures with

a large number of variables relative to the number of observations. This

new venue of research o�ers unique opportunities for analyzing previously un-

touched �elds due to data limitations. Our study introduces a machine learning

approach for modeling and forecasting highway construction cost changes. Our

Lasso and Random Forest models have high predictive power, and it suggests

that the application of machine learning techniques can improve the estimation

of actual project costs for optimal allocation of public funds.
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1 Introduction

Advancement in technology not only makes our lives more comfortable and also en-

ables to store more and more data about many aspects of daily economic transactions

(George et al. 2014, Chen & Zhang 2014). Google, Facebook, and Twitter record

every click or a browsing pattern users generate on these platforms. You may be

surprised to realize that the pair of shoes you were browsing on eBay at lunchtime,

a couple of days ago, has been following you ever since, even when you read the

daily news. You may get extra surprised to see that, with the help of various ma-

chine learning tools, you have been targeted with the ads of other related products,

such as a coat, which matches the pair of shoes well and was frequently shopped by

customers similar to you.

Machines can learn with and without the human supervision. It has been shown

that Unsupervised Machine Learning (UML) methods can be useful especially when

the outcome of interest is unobserved (Mohammed et al. 2016). For instance, a

database may contain various information about customers, including zip code, ed-

ucation, gender and so on, but a researcher is interested in clustering the customers

into low and high spending groups. Thus, in this case, input variables are available,

but the outcome of interest is missing from the dataset. UML algorithms can solve

this problem by clustering the customers into di�erent groups based on observed

variables. The eventual goal is to �nd clusters that overlap with spending habits.1

However, researchers are still skeptical about the black-box nature of these tech-

niques and prefer using Supervised Machine Learning (SML) methods, which are

1See (Hastie et al. 2015) for an in-depth discussion of this topic.
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the focus of this article (Athey 2017). Recent years have witnessed a considerable

surge in the application of SML to various economic topics. For example, banks in

the U.S. use credit scores of customers in making decisions on loan requests. But

in other countries, especially in the developing world, �nancial institutions do not

have this tool in their credit appraisal toolkit. With the help of Random Forest

SML Bjorkegren & Grissen (2015) develop a model which can successfully predict

default probabilities by using pre-paid mobile phone usage data. The authors match

customer data of a micro�nance institution with the data of a mobile operator in a

Caribbean country. This approach enabled the authors to observe customers' SMS,

data usage and call activities combined with their �nancial history. Bjorkegren &

Grissen (2015) show that their model can be a good alternative to the credit score

system and can reduce defaults by 41%. Furthermore, in developed countries, �nan-

cial institutions o�er almost the entire portfolio of their services via online platforms.

Customers can integrate their online debit and credit accounts, which helps banks to

record every single individual �nancial activity. This kind of �nancial information is

increasingly used in the assessment of credit applications and also in the evaluation

of potential bankruptcy of business loans. More detailed data also enables to improve

predictions on future performance of �nancial institutions (Chen et al. 2016, Gogas

et al. 2017).

Not only private sector and also government institutions have started recording an

immense amount of data. �Smart Cities� create a massive opportunity for researchers

to analyze a broad range of economic topics from job creation to environmental

policy (Kitchin 2014). For instance, the partnership of IBM and the city government
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of Rio de Janeiro, Brazil, enabled to combine data streams from thirty agencies,

ranging from tra�c and public transport to employee information, into one data

center (Kitchin 2014). Glaeser et al. (2016) use Google Street View (GSV) data to

predict income. Conventionally governments use property taxes as a tool to conduct

property value appraisal. But Glaeser et al. (2016) show that by applying SML

methods to big urban data, including street view images, they can better predict

neighborhood income level and property values. The authors acquired GSV image

data of New York City between 2007 and 2014 and linked that data to income data

from American Community Survey. After training the v-support vector regression

(v-SVR) model in the training set, they made predictions for the hold-out-sample.

Glaeser et al. (2016) report that the R2 of their predictions was above 80%, which

means a very successful prediction accuracy. Thus, the fact that industry has already

embraced big data and the relevant analytical tools to feed new insights into its

daily operations serves as an additional motivation for academia to model this new

phenomenon.

Data, �guratively speaking, is the �input material� of economic research and

merely scaling up the input does not necessarily mean that you can increase the out-

put as well. Similar to production, without advancing the techniques and procedures

of economic research, it is tough to secure a higher return.

The availability of �Big Data� creates many challenges for economists. From one

perspective, big data provides many independent variables that the current economic

theory lacks in modeling and connecting those variables to traditional economic

topics. Nevertheless, unconventional measures are increasingly becoming a part of
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economic models. For instance, the availability of large satellite image data enabled

economists to model and explore the relationship between city lights and economic

activity (Michalopoulos & Papaioannou 2013, Doll et al. 2006). However, many other

similar variables are still �awaiting� their turns to be a part of economic studies.

From another perspective, big data also shifts the focus of economic research.

For example, conventional labor economics is interested in the return to schooling,

i.e., estimating β or the relationship between one more year education and income.

But the availability of huge datasets also helps us to answer other questions, such as

deciding which teacher to hire, that is more about predicting ŷ rather than estimating

β̂ (Mullainathan & Spiess 2017).

Predicting ŷ became a part of economic research long ago. Forecasting of stock

returns is the central focus of the �nancial time series econometrics. Even some

widely applied estimation techniques implicitly use predicting, such as the �rst stage

of the instrumental variable method (Mullainathan & Spiess 2017).

The value of machine learning becomes apparent when there is a critical ŷ task,

with high dimensional data but without clear guidance of economic theory (Mul-

lainathan & Spiess 2017). For instance, the conventional applied economic research

mostly employs datasets where the number of variables is less than the number of

observations, and the relationship between input variables and the outcome measure

is evident from economic models (Einav & Levin 2014). However, an increasing num-

ber of situations in which datasets contain a large number of variables, but a limited

number of observations creates new challenges, mainly because of the unusual shape

of the datasets (K � N), lack of initial hypotheses, high correlation among vari-
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ables, and the sparsity assumption which implies that there exists a much smaller

set of variables that can be used in predicting the dependent variable (Belloni et al.

2012, 2011). In this case, the central question is how many and which covariates

are to be selected to predict the outcome of interest. If a subset of variables pro-

vides better predictions compared to the complete set variables, then data-driven

machine learning approaches can help to identify those variables (Einav & Levin

2014, Mullainathan & Spiess 2017, Belloni et al. 2012).

In this study, we apply several machine learning methods to tackle with a ŷ task

that has substantial economic importance and o�ers a suitable framework to test

how this new approach can be helpful. We forecast the Highway Cost Index (HCI)

for Texas by using the Least Absolute Selection and Shrinkage Operator (LASSO),

Ridge, Elastic Net and Random Forest machine learning methods that recently at-

tracted the attention of economists (Mullainathan & Spiess 2017).

The HCI is a monthly index and is comprised of prices of primary construction

materials in highway construction (Wang & Ashuri 2017). The HCI helps to mea-

sure the cost of a certain amount of materials to be used in construction compared

to prices in 2012 (Wang & Ashuri 2017).2 Thus the HCI has high importance in

public investment budgeting and cost estimation, but it is mostly unexplored by

economists, mainly because of the high dimensionality of the data and the lack of

relevant techniques to reduce the number of predictors.

2ftp://ftp.dot.state.tx.us/pub/txdot-info/cst/hci-binder.pdf
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2 The Background of HCI

The U.S. highway construction represents the largest share of civil public spending.

In January of 2017, public highway construction spending was 86.7 billion dollars

or 32% of the total public construction spending.3 Nearly half of all the currently

active large transportation projects in the United States have exceeded their initial

budget (Shane et al. 2009). Thus highway construction cost estimates need to re�ect

the actual project costs as much as possible for optimal allocation of public funds

(Harper et al. 2013).

This study employs a machine learning approach for predicting highway construc-

tion costs. Our study is motivated by the fact that accurately forecasting highway

construction cost trends will help States (and particularly Texas in our case) to

monitor increases in highway construction costs and e�ciently match budget appro-

priations with actual expenditures.4

Figure 1 shows that, although the HCI has the upward trend across years, it is

prone to short-term �uctuations due to economic conditions (Shahandashti & Ashuri

2015). Thus we model and forecast changes in the HCI during a 12-month-period.

Furthermore, our study shows that machine learning methods can be a promising

venue for applications with a limited number of observations and a large number of

potential regressors.

[Figure 1 about here]

3https://www.census.gov/construction/c30/pdf/release.pdf
4https://www.fhwa.dot.gov/policyinformation/nhcci/desc.cfm
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The review of the relevant literature shows that the primary method to analyze

small data sets with a large number of variables uses causal and univariate time

series models with a small set of variables chosen by researchers (Xu & Moon 2011).

However, this approach generates skepticism regarding the selection of input vari-

ables. We show that using appropriate Machine Learning methods can introduce a

more robust mechanism to select independent variables and it can generate accurate

forecasts. An empirical application of our model and forecasting of highway cost

estimates illustrates the usefulness of the approach.

3 Studies on HCI

Accurate forecasting of the HCI is essential in avoiding underestimating highway

construction costs (Wang & Ashuri 2017). This issue is critical especially for public

projects where cost adjustments and the request of additional funds may face bu-

reaucratic barriers and take a long time. Cost indexes facilitate cost estimation, bid

preparation, investment planning and also monitoring cost escalations in construc-

tion projects (Wang & Ashuri 2017, Zhang et al. 2017).

Shahandashti & Ashuri (2015) develop a forecast model for the National Highway

Construction Cost Index (NHCCI) and consider various macroeconomic indicators,

spanning from oil price to consumer price index for their model. By using Augmented

Dickey-Fuller and Granger Causality test, they determine that crude oil price and

average hourly earnings are main indicators in predicting the NHCCI. They employ

the Vector Error Correction model to forecast the cost index and report 2.07% the
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Mean Absolute Percentage Error (MAPE) for a 12-month-period forecast. But their

study employs a one-step-ahead forecast approach, meaning the model always use

input data up to t− 1 period to forecast the changes in the NHCCI for t period.

Joukar & Nahmens (2015) also employ a time series framework and forecast the

CCI with its historical values. They report around 20% MAPE for out-of-sample

predictions.

Zhang et al. (2017) forecast the Construction Cost Index (CCI) with the visibility

graph network approach. The authors use historical values of the CCI to predict its

future value both with one-step-ahead and multi-step-ahead approaches. In the 12-

month-period multi-step-ahead forecast, they report more than 50% MAPE in their

predictions.

Wang & Ashuri (2017) use k nearest neighbor (k-NN) and perfect random tree

ensembles (PERT) machine-learning methods to predict the CCI. They employ multi-

step-ahead forecast approach and use historical values of the CPI and the producer

price index (PPI). For the following 12 months predictions, the authors report 18%

and 19% MAPE for the Pert and k-NN methods respectively.

4 Data Collection and Pre-Process

The data was obtained from the Texas A&M Transportation Institute. It consists of

20 individual price items that de�ne the HCI for Texas. Table 1 presents the list of

variables.

After dropping observations where one or more variables have missing values,
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our monthly dataset spans from January 2002 until March 2016 for a total of 145

observations. Our dependent variable is the HCI.

[Table 1 about here]

To prepare the dataset for machine learning estimations, we transformed input

variables and the outcome measure into relative changes (Wang & Ashuri 2017). The

relative change transformation helps to get rid of the potential non-stationarity since

our variables have time series nature. We follow Wang & Ashuri (2017) and de�ne

our relative change transformations as the following:

xpt =
Xpt −Xpt−1

Xpt

, yt =
Yt − Yt−1

Yt
(1)

where p denotes the name of transformed input variable X, and tε[1, ..., T ] is the

month of the observation. Y indicates the outcome variable, i.e., the HCI.

After the relative change transformation, we generated lags of input variables up

to six months to avoid having any looking-ahead bias in our estimations (Wang &

Ashuri 2017). Thus, the total number of input variables is 140 in our dataset.

We set aside observations, spanning from September 2002 until March 2015, for

our training set (133 observations). We used observations from April 2015 to March

2016 as our test set.

In line with (Wang & Ashuri 2017), after predicting ŷt+1, the prediction of the

HCI for April 2015 was calculated as the following:
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Ŷt+1 = (1 + ŷt+1)Yt (2)

where Yt represents the actual HCI of March 2015. For the next months we

employed the similar strategy:

Ŷt+s+1 = (1 + ŷt+s+1)Ŷt+s (3)

where sε(1, ..., 11).

5 Methodology

The Least Absolute Shrinkage and Selection Operator (LASSO), Ridge

and Elastic Net Estimations

We follow Friedman et al. (2010) in setting up our model for Lasso, Ridge and Elastic

Net estimations. Our response variable is Y εR and the matrix of input variables is

XεRp. Furthermore, we approximate our outcome variable as the following:

E(Y |X = x) = β0 + xᵀβ (4)

We normalize our variables and use Pα(β) = (1−α)1
2
‖β‖2`2+α‖β||`1 penalty to obtain

a sparse solution in the presence of a large number of covariates (Belloni et al. 2012,

2011, Tibshirani 1996, Friedman et al. 2010). Generally, we estimates the following

model (Hastie et al. 2015, Friedman et al. 2010):
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min
(β0,β)εRp+1

[
1

T

T∑
t=1

(
yt − β0 − x>t β

)2 − λPα(β)] (5)

where for each outcome variable there are p independent variables and p > T (T

is the total number of observed time periods). Note that in our case p = 140 and

T = 133.

This problem can be solved with coordinate descent. Let's denote the objective

function in equation 5 with R(β0, β). Suppose we estimate β̃0 and β̃` for ` 6= j and

the goal is the partially optimize with respect to βj. The gradient at βj = β̃j exists

if β̃j 6= 0 and β̃j > 0:

∂R

∂βj
|β=β̃ = − 1

T

T∑
t=1

xtj(yt − β̃0 − x>t β̃) + λ(1− α)βj + λα (6)

When, β̃j 6= 0 and β̃j < 0 we have a similar expression. Then the solution

progressed through the coordinate-wise updates and has the following form:

β̃j ←
S
(

1
T

∑T
t=1 xtj(yt − ỹ

(j)
i ), λα

)
1 + λ(1− α)

(7)

where, ỹ
(j)
i = β̃0+

∑
6̀=j xt`β̃` is the �tted value when xtj is excluded and yt− ỹ(j)i

is the partial residual for βj. S is the soft-thresholding operator.5

Depending on the value of α we can estimate three di�erent models. When

α = 1 we estimate Lasso. We obtain Ridge and Elastic Net regressions for α = 0

and α = 0.5 respectively.6

5Please, refer to Friedman et al. (2007) for details.
6Friedman et al. (2010) present a detailed discussion about the steps of estimations of models.
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If there are m highly correlated predictors, Lasso picks only one and ignores the

rest. But contrary to Lasso, Ridge method keeps all highly correlated variables,

nevertheless shrinks their coe�cients towards each other (Friedman et al. 2010).

So, in Ridge estimation, every predictor will get 1/mth size of its coe�cient that

it would get in the case of �tting alone. Elastic Net estimation is a compromise

between Ridge and Lasso, as it discards only extremely correlated predictors and

then shrinks coe�cient like Ridge.

Lasso behaves well when there are many highly correlated predictors (Friedman

et al. 2010). We assume that most of our predictors are highly correlated. For

instance, it is reasonable to assume that the prices of cement and asphalt move

together. We also follow Friedman et al. (2010) and check whether the ridge or the

elastic net regressions can outperform the Lasso concerning predictions of the HCI.

Friedman et al. (2010) particularly focused on the elastic net estimation and showed

that in the case of high multicollinearity the elastic net may perform better regarding

the selection of the most important independent variables.

We start our analysis in the training set. In the training set, we estimate Lasso,

Ridge and Elastic Net models to �nd the optimal λ∗ that minimizes the mean squared

errors (MSE) in predictions of models. We randomly divide the training data into

ten groups of equal size and de�ne nine groups as the �pre-validation training� set

and the 10th as a �pre-validation test� set.

We estimate a model with a speci�c value of λ and mark the MSEs in predictions

of a �tted model for each λ value. We repeat this procedure 100 times, and λ∗ is

found when the MSE of a model is minimized. Figure 2 showcases one example from
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our estimations.

[Figure 2 about here]

Random Forest

Regression trees have been developed to bridge linear models with non-parametric

estimations (Faraway 2016, Breiman 2001, Liaw et al. 2002). This approach does

not presume any speci�c model before starting analyses. Instead, the focus is to

develop a model by learning patterns in the dataset via certain algorithms. While

growing a tree, at each node
√
p number of input variables are randomly drawn with

replacement. A point, along with the range of each randomly drawn variable, is

chosen to do a split to minimize the Residual Sum of Squares (RSS) of the outcome

variable. For instance, at each partition of an input variable, we get two parts, and

the RSS of the outcome variable is calculated as the following (Faraway 2016):

RSS(Partition) = RSS(part1) +RSS(part2) (8)

The node is assigned to the input variable which helps to get the minimum RSS

for the outcome variable. We continue to grow nodes and consequently the tree until

we cannot improve (or minimize) the RSS.

Particularly, we use bootstrap aggregating (or bagging) in Random Forest esti-

mation. For b = 1, ...., B: 1) We draw a sample with replacement from (X, Y ). 2)

We �t a regression tree to (Xb, Yb). 3) We predict the outcome variable with the tree

and compare the prediction with the true value from hold-out-sample in the training
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set (Faraway 2016). The eventual goal is to minimize the MSE of the prediction.

With this pace, Random Forest grows hundreds of trees. Each tree of the Random

Forest can be thought as a di�erent model, so the Random Forest employs not one

but hundred models in its �nal decision. Figure 3 depicts how increasing the number

of trees in the forest a�ects the prediction error rates in the training set.

[Figure 3 about here]

We grow our forest with the training set and then we predict the HCI in the test

set. In the test set, we ask each tree of the forest to predict the HCI. Since each tree

is a di�erent model, we get di�erent predictions, and the �nal forecast is the average

of forecasts made by the forest (Faraway 2016).

For the illustration purposes, we present a simple tree in Figure 4. For instance,

this particular tree starts with the �fth lag of the relative change of the price of Class

C Concrete. If the relative change is more than 0.02 the analysis continues along the

right branch and then checks the �rst lag of the relative change in the price of Class

A Concrete and makes a prediction about the change in the HCI for the next period.

[Figure 4 about here]

After estimating models and predicting the next 12 months values of HCI, we

calculate the MAPE of predictions. The MAPE is calculated as the following:

MAPE = |(Ŷt − Yt)|/Yt| (9)
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6 Prediction Results and Conclusion

Figure 5 presents predictions of the models. It is evident that the models predict

the HCI very well until the eighth month. We observe a slight deviation of the

predictions from the actual values between eighth and eleventh months. But our

predictions revert to the actual HCI in the 12th month.

[Figure 5 about here]

Table 2 reports the MAPE of predictions. It can be observed that the MAPE

doubles in the following two months after the seventh month. But it starts to decrease

after the tenth month. On average, our models have 12% MAPE for the next 12-

month multi-step-ahead forecast.

[Table 2 about here]

Our results prove that employing Machine-learning methods can yield signi�cant

improvements in cost index forecasts compared to time series models. The MAPE

of our �ndings is very close to the outcomes of Wang & Ashuri (2017), it further

hints that project planners and engineers can save a considerable amount of costs by

employing these new techniques.

The good prediction performance of the employed SML methods shows that these

techniques can be good alternatives to time series models, especially in the multi-

step-ahead forecasting (Wang & Ashuri 2017). Furthermore, it also suggests that

SML methods can be successfully employed in predicting other cost indexes, such as
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the Building Construction Index (BIC) (Wang & Ashuri 2017).

Our results show that by applying machine learning techniques and by scrutiniz-

ing hard-to-analyze data structures previously, economists can achieve better pre-

dictions, more satisfactory answers to old questions and eventually can develop new

researches methods (Einav & Levin 2014). Moreover, a more comprehensive multi-

disciplinary approach, which utilizes recent advancements in computing algorithms

and statistics to solve practical economic problems, can boost applied economic re-

search (Athey 2017).
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Table 1
List of Independent Variables

Excavation Embankment Lime
Lime Treatment Cement Flexible Base
Surface Asphalt Surface Treatment Aggregate Class A Concrete
Hot Mix Asphaltic Concrete Class C Concrete Class S Concrete
Bridge Rail Bridge Slab Regular Beams
Drilled Shafts Corrugated Metal Pipe Concrete Box Culverts

Concrete Riprap RetainingWalls
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Table 2
Prediction Performance (MAPE)

(Rdige) (Elastic Net) (Lasso) (Random Forest)

Lead 1 0.04 0.04 0.05 0.03

Lead 2 0.04 0.06 0.06 0.04

Lead 3 0.07 0.01 0.01 0.09

Lead 4 0.06 0.05 0.05 0.07

Lead 5 0.10 0.11 0.11 0.08

Lead 6 0.01 0.02 0.01 0.02

Lead 7 0.08 0.05 0.08 0.09

Lead 8 0.16 0.17 0.17 0.17

Lead 9 0.32 0.32 0.33 0.33

Lead 10 0.20 0.16 0.16 0.21

Lead 11 0.23 0.16 0.16 0.26

Lead 12 0.11 0.18 0.18 0.09

Average 0.12 0.11 0.12 0.12
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This graph depicts the values of the HCI for Texas from January 2002 until March
2016. It is evident that the HCI closely follows the economic activity as we observe

a decline around the 2007-08 �nancial crises (which starts around the 72nd
observation in our dataset). The subsequent economic recovery also increases the

HCI.

Figure 1
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In this particular example, we �nd λ∗ by picking di�erent values for the λ and
predicting the NHCCI in Nine Months. The top axis shows the number of chosen
input variables by Lasso and the bottom axis shows the corresponding penalty. The

Left axis presents the MSE in predictions. The dashed lines indicate the one
standard error region of the λ∗ that minimizes the MSE. Consider that this region
also coincides with a very few number of input variables (which is evident from the

top axis).

Figure 2
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We choose to grow 1500 trees in each forest. This graph shows the performance of
Random Forest in developing a model to predict the NHCCI in four months.

Prediction error rate doesn't decrease after a certain number of trees.

Figure 3
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This tree is constructed to describe how Random Forest classi�es observations.

Figure 4
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Performance of Models in Predicting the HCI.

Figure 5
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